Abstract
We present results of the first lattice QCD calculations of the weak matrix elements for the decays $B_c^+ \to D^0 \ell^+ \nu_{\ell}$, $B_c^+ \to D_s^+ \ell^+ \ell^-$ and $B_c^+ \to D_s^+ \nu \overline{\nu}$. Form factors across the entire physical $q^2$ range are then extracted and extrapolated to the continuum limit with physical quark masses. Results are derived from correlation functions computed on MILC collaboration gauge configurations with three different lattice spacings and including 2+1+1 flavours of sea quarks in the Highly Improved Staggered Quark (HISQ) formalism. HISQ is also used for all of the valence quarks. The uncertainty on the decay widths from our form factors for $B_c^+ \to D^0 \ell^+ \nu_{\ell}$ is similar in size to that from the present value for $V_{ub}$. We obtain the ratio $\Gamma (B_{c}^{+} \rightarrow D^0 \mu^{+} \nu_{\mu}) /\left|\eta_{\mathrm{EW}} V_{u b}\right|^{2}=4.43(63) \times 10^{12} \mathrm{~s}^{-1}$. Combining our form factors with those found previously by HPQCD for $B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}$, we find $\left|V_{cb}/V_{ub} \right|^2 \Gamma( B_c^+ \to D^0 \mu^+ \nu_\mu )/\Gamma(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}) = 0.257(36)_{B_c \to D}(18)_{B_c \to J/\psi}$. We calculate the differential decay widths of $B_c^+ \to D_s^+ \ell^+ \ell^-$ across the full $q^2$ range, and give integrated results in $q^2$ bins that avoid possible effects from charmonium and $u \overline{u}$ resonances. For example, we find that the ratio of differential branching fractions integrated over the range $q^2 = 1 \; \mathrm{GeV}^2 - 6 \; \mathrm{GeV}^2$ for $B_c^+ \to D_s^+ \mu^+ \mu^-$ and $B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}$ is $6.31{\tiny }(90)_{B_c \to D_s}(65)_{B_c \to J/\psi} \times 10^{-6}$. We also give results for the branching fraction of $B_c^+ \to D_s^+ \nu \overline{\nu}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.