Abstract
We present the result of lattice QCD calculation of the scalar, vector and tensor form factors for the $B\to K\ell^+\ell^-$ decay, across the full physical range of momentum transfer. We use the highly improved staggered quark (HISQ) formalism for all valence quarks on eight ensembles of gluon field configurations generated by the MILC collaboration. These include four flavours of HISQ quarks in the sea, with three ensembles having the light $u/d$ quarks at physical masses. In the first fully relativistic calculation of these form factors, we use the heavy-HISQ method. This allows us to determine the form factors as a function of heavy quark mass from the $c$ to the $b$, and so we also obtain new results for the $D\to K$ tensor form factor. The advantage of the relativistic formalism is that we can match the lattice weak currents to their continuum counterparts much more accurately than in previous calculations; our scalar and vector currents are renormalised fully nonperturbatively and we use a well-matched intermediate momentum-subtraction scheme for our tensor current. Our scalar and vector $B\to K$ form factors have uncertainties of less than 4% across the entire physical $q^2$ range and the uncertainty in our tensor form factor is less than 7%. Our heavy-HISQ method allows us to map out the dependence on heavy-quark mass of the form factors and we can also see the impact of changing spectator quark mass by comparing to earlier HPQCD results for the same quark weak transition but for heavier mesons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.