Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants known to pose significant risks to human and wildlife health. Freshwater turtles (Emydura macquarii macquarii), as long-lived species inhabiting aquatic ecosystems, are particularly vulnerable to PFAS bioaccumulation. This study investigated the multifaceted impact of PFAS contamination on these turtles, focusing on metabolic disruptions, reproductive success, hatchling health, and population impacts. Comprehensive analyses, including proteomics, lipidomics, metabolomics, and histopathology, were conducted on turtles from PFAS-impacted, control, and reference sites. The findings reveal significant metabolic disruptions in PFAS-exposed turtles, with alterations in amino acid and lipid metabolism, energy production, and oxidative stress responses. Proteomic analysis identified several health biomarkers indicative of early disease progression. Despite high levels of PFAS in tissues and organs, no gross or histopathological phenotypical abnormalities were directly linked to PFAS exposure. Gravid females from contaminated sites exhibited altered egg composition, particularly in magnesium to calcium ratios, potentially affecting eggshell strength. Biochemical profiles of egg albumin and yolk indicated significant differences in metabolites and lipids between contaminated and reference sites, suggesting potential impacts on embryo development. Hatchling deformities were notably higher and with increased frequency in terms of the types of deformities at the PFAS-impacted sites, with common defects including abnormal intergular scale shapes and marginal scale counts. Furthermore, the demographic profile of the turtle population showed a lack of juvenile turtles at contaminated sites, indicating reduced recruitment and potential long-term population declines. This indicates a field-based demonstration of an Adverse Outcome Pathway, from elevated levels of PFAS in the turtles, to biochemical perturbations within the animals, and finally population effects. These findings underscore the urgent need for regulatory measures to address PFAS contamination and its detrimental effects on wildlife.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.