Abstract

Accurate estimation of forest height over a large area is beneficial to reduce the uncertainty of forest carbon sink estimation, which is of great significance to the terrestrial carbon cycle, global climate change, forest resource management, and forest-related scientific research. Forest height inversion using polarimetric interferometry synthetic aperture radar (PolInSAR) data through Random volume over ground (RVoG) models has demonstrated great potential for large-area forest height mapping. However, the wavelength and baseline length used for the PolInSAR data acquisition plays an important role during the forest height estimation procedure. In this paper, X–, C–, L–, and P–band PolInSAR datasets with four different baseline lengths were simulated and applied to explore the effects of wavelength and baseline length on forest height inversion using RVoG models. Hierarchical Bayesian models developed with a likelihood function of RVoG model were developed for estimated results uncertainty quantification and decrease. Then a similar procedure was applied in the L– and P–band airborne PolInSAR datasets with three different baselines for each band. The results showed that (1) Wavelength showed obvious effects on forest height inversion results with the RVoG model. For the simulated PolInSAR datasets, the L– and P–bands performed better than the X– and C–bands. The best performance was obtained at the P–band with a baseline combination of 10 × 4 m with an absolute error of 0.05 m and an accuracy of 97%. For the airborne PolInSAR datasets, an L–band with the longest baseline of 24 m in this study showed the best performance with R2 = 0.64, RMSE = 3.32 m, and Acc. = 77.78%. (2) It is crucial to select suitable baseline lengths to obtain accurate forest height estimation results. In the four baseline combinations of simulated PolInSAR datasets, the baseline combination of 10 × 4 m both at the L– and P–bands performed best than other baseline combinations. While for the airborne PolInSAR datasets, the longest baseline in three different baselines obtained the highest accuracy at both L– and P–bands. (3) Bayesian framework is useful for estimation results uncertainty quantification and decrease. The uncertainties related to wavelength and baseline length. The uncertainties were reduced obviously at longer wavelengths and suitable baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.