Abstract

Mountains are observed to preferentially accumulate persistent organic pollutants (POPs) at higher altitude due to the cold condensation effect. Forest soils characterized by high organic carbon are important for terrestrial storage of POPs. To investigate the dominant factor controlling the altitudinal distribution of POPs in mountainous areas, we measured concentrations of polychlorinated biphenyls (PCBs) in different environmental matrices (soil, moss, and air) from nine elevations on the eastern slope of Mt. Gongga, the highest mountain in Sichuan Province on the Tibetan Plateau. The concentrations of 24 measured PCBs ranged from 41 to 510 pg/g dry weight (dw) (mean: 260 pg/g dw) in the O-horizon soil, 280 to 1200 pg/g dw (mean: 740 pg/g dw) in moss, and 33 to 60 pg/m(3) (mean: 47 pg/m(3)) in air. Soil organic carbon was a key determinant explaining 75% of the variation in concentration along the altitudinal gradient. Across all of the sampling sites, the average contribution of the forest filter effect (FFE) was greater than that of the mountain cold trapping effect based on principal components analysis and multiple linear regression. Our results deviate from the thermodynamic theory involving cold condensation at high altitudes of mountain areas and highlight the importance of the FFE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.