Abstract

Foreign object damage (FOD) behavior of two gas-turbine grade silicon nitrides (AS800 and SN282) was determined with a considerable sample size at ambient temperature using impact velocities ranging from 50 to 225 m/s by 1.59-mm diameter silicon nitride ball projectiles. The degree of impact damage as well as of post-impact strength degradation increased with increasing impact velocity, and was greater in SN282 than in AS800 silicon nitride. The critical impact velocity in which target specimens fractured catastrophically was remarkably low: about 200 and 130 m/s, respectively, for AS800 and SN282. The difference in the critical impact velocity and impact damage between the two target silicon nitrides was attributed to the fracture toughness of the target materials. The FOD by silicon nitride projectiles was significantly greater than that by steel ball projectiles. Prediction of impact force was made based on a yield model and compared with the conventional Hertzian contact-stress model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.