Abstract

Foreign object damage (FOD) phenomena of two gas-turbine grade silicon nitrides (AS800 and SN282) were assessed at ambient temperature applying impact velocities from 20 to 300 m/s using 1.59-mm diameter hardened steel ball projectiles. Targets in a flexural configuration with two different sizes (thicknesses) of 1 and 2 mm were ballistic-impacted under a fully supported condition. The severity of impact damage, as well as the degree of post-impact strength degradation, increased with increasing impact velocity, increased with decreasing target size, and was greater in SN282 than in AS800 silicon nitride. The critical impact velocity where targets fractured catastrophically decreased with decreasing target size and was lower in SN282 than in AS800. Overall, FOD by steel projectiles was significantly less than that by silicon-nitride ceramic counterparts, due to much decreased Hertzian contact stresses. A correlation of backside cracking velocity versus target size was made based on a simplified elastic foundation analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.