Abstract

In this paper, we propose a component conditional autoregressive range (CCARR) model for forecasting volatility. The proposed CCARR model assumes that the price range comprises both a long-run (trend) component and a short-run (transitory) component, which has the capacity to capture the long memory property of volatility. The model is intuitive and convenient to implement by using the maximum likelihood estimation method. Empirical analysis using six stock market indices highlights the value of incorporating a second component into range (volatility) modelling and forecasting. In particular, we find that the proposed CCARR model fits the data better than the CARR model, and that it generates more accurate out-of-sample volatility forecasts and contains more information content about the true volatility than the popular GARCH, component GARCH and CARR models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.