Abstract

Tuberculosis is a disease that can affect socio-economic development. Based on data from the World Health Organization, there were 810,918 tuberculosis cases in Indonesia, which is noted as the third-highest number of tuberculosis cases in Asia in 2016. Prevention and control of tuberculosis are of considerable importance, especially in the insurance field, to cover the cost of treatment, so an accurate model of tuberculosis morbidity is needed. The method used in forecasting the tuberculosis morbidity rate is Autoregressive Integrated Moving Average (ARIMA) method. The ARIMA method is a time series method that is widely used to predict morbidity rates in the future. The data used in this study is the number of incidence morbidity tuberculosis rates that occurred in Indonesia from 2000 to 2017, which is obtained from the World Bank. The results showed that ARIMA (1, 2, 0) is the best and very accurate model to forecast the morbidity rate in Indonesia from 2018 to 2027, with the mean absolute percentage error (MAPE) is 0.1682 % and Akaike Information Criterion (AIC) values is -181.0120. The results of forecasting tuberculosis morbidity rate are expected to help insurance companies in determining the amount of premium paid by customers who suffer tuberculosis diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.