Abstract

Abstract An objective methodology for forecasting the probability of tropical cyclone (TC) formation in the Fiji, Samoa, and Tonga regions (collectively the FST region) using antecedent large-scale environmental conditions is investigated. Three separate probabilistic forecast schemes are developed using a probit regression approach where model parameters are determined via Bayesian fitting. These schemes provide forecasts of TC formation from an existing system (i) within the next 24 h (W24h), (ii) within the next 48 h (W48h), and (iii) within the next 72 h (W72h). To assess the performance of the three forecast schemes in practice, verification methods such as the posterior expected error, Brier skill scores, and relative operating characteristic skill scores are applied. Results suggest that the W24h scheme, which is formulated using large-scale environmental parameters, on average, performs better than that formulated using climatology and persistence (CLIPER) variables. In contrast, the W48h (W72h) scheme formulated using large-scale environmental parameters performs similar to (poorer than) that formulated using CLIPER variables. Therefore, large-scale environmental parameters (CLIPER variables) are preferred as predictors when forecasting TC formation in the FST region within 24 h (at least 48 h) using models formulated in the present investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.