Abstract
Several univariate and multivariate models have been proposed for performing short-term forecasting of traffic flow. Two different univariate [historical average and ARIMA (autoregressive integrated moving average)] and two multivariate [VARMA (vector autoregressive moving average) and STARIMA (space–time ARIMA)] models are presented and discussed. A comparison of the forecasting performance of these four models is undertaken with data sets from 25 loop detectors located in major arterials in the city of Athens, Greece. The variable under study is the relative velocity, which is the traffic volume divided by the road occupancy. Although the specification of the network’s neighborhood structure for the STARIMA model was relatively simple and can be further refined, the results obtained indicate a comparable forecasting performance for the ARIMA, VARMA, and STARIMA models. The historical average model could not cope with the variability of the data sets at hand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.