Abstract
The traffic-flow system has basic dynamic characteristics. This feature provides a theoretical basis for constructing a reasonable and effective model for the traffic-flow system. The research on short-term traffic-flow forecasting is of wide interest. Its results can be applied directly to advanced traffic information systems and traffic management, providing real-time and effective traffic information. According to the dynamic characteristics of traffic-flow data, this paper extends the mechanical properties, such as distance, acceleration, force combination, and decomposition, to the traffic-flow data vector. According to the mechanical properties of the data, this paper proposes four new models of structural parameters and component parameters, inertia nonhomogenous discrete gray models (referred to as INDGM), and analyzes the important properties of the model. This model examines the construction of the inertia nonhomogenous discrete gray model from the mechanical properties of the data, explaining the classic NDGM modeling mechanism in the meantime. Finally, this paper analyzes the traffic-flow data of Whitemud Drive in Canada and studies the relationship between the inertia model and the traffic-flow state according to the data analysis of the traffic-flow state. A simulation accuracy and prediction accuracy of up to 0.0248 and 0.0273, respectively, are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.