Abstract
AbstractLarge geomagnetically induced currents (GICs) pose a risk to ground based infrastructure such as power networks. Large GICs may be induced when the rate of change of the ground magnetic field is significantly elevated. We assess the ability of three different machine learning model architectures to process the time history of the incoming solar wind and provide a probabilistic forecast as to whether the rate of change of the ground magnetic field will exceed specific high thresholds at a location in the UK. The three models tested represent feed forward, convolutional and recurrent neural networks. We find all three models are reliable and skillful, with Brier skill scores, receiver‐operating characteristic scores and precision‐recall scores of approximately 0.25, 0.95 and 0.45, respectively. When evaluated during two example magnetospheric storms we find that all scores increase significantly, indicating that the models work better during active intervals. The models perform excellently through the majority of the storms, however they do not fully capture the ground response around the initial sudden commencements. We attribute this to the use of propagated solar wind data not allowing the models notice to forecast impulsive phenomenon. Increasing the volume of solar wind data provided to the models does not produce appreciable increases in model performance, possibly due to the fixed model structures and limited training data. However, increasing the horizon of the forecast from 30 min to 3 h increases the performance of the models, presumably as the models need not be as precise about timing.
Highlights
Induced currents (GICs) are a primary space weather hazard, caused by intense dynamical processes in near-Earth space
The models report PR scores of between 0.4 and 0.5. This likely reflects the imbalanced data set where the ROC score is inflated by considering the correct majority class where “nothing” occurs
The Brier Skill Score (BSS) of the models are around 0.2 − 0.3, indicating good reliability compared to climatology
Summary
Induced currents (GICs) are a primary space weather hazard, caused by intense dynamical processes in near-Earth space. The generation of GICs in grounded infrastructure, such as pipelines or power networks, can damage components during intervals of exceptionally large GICs Some of the risks associated with large GICs may be mitigated with sufficient warning, and so forecasting when such intervals are likely to occur is a critical endeavor. Space weather events that generate extremely large GICs are thankfully rare. The rarity of these events coupled with the relative sparsity of direct GIC measurements means that a proxy measurement is often necessary to provide a sufficient historical dataset with which to train advanced forecasting models. The magnitude of GICs is predominantly dependent upon three factors: (1) the rate of change of the magnetic field, (2)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have