Abstract
Forecasting the Primary Demand for a Beer Brand Using Time Series Analysis Market research often uses data (i.e. marketing mix variables) that is equally spaced over time. Time series theory is perfectly suited to study this phenomena's dependency on time. It is used for forecasting and causality analysis, but their greatest strength is in studying the impact of a discrete event in time, which makes it a powerful tool for marketers. This article introduces the basic concepts behind time series theory and illustrates its current application in marketing research. We use time series analysis to forecast the demand for beer on the Slovenian market using scanner data from two major retail stores. Before our analysis, only broader time spans have been used to perform time series analysis (weekly, monthly, quarterly or yearly data). In our study we analyse daily data, which is supposed to carry a lot of ‘noise’. We show that - even with noise carrying data - a better model can be computed using time series forecasting, explaining much more variance compared to regular regression. Our analysis also confirms the effect of short term sales promotions on beer demand, which is in conformity with other studies in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.