Abstract
There are numerous studies dealing with analysis for the future patterns of COVID-19 in different countries using conventional time series models. This study aims to provide more flexible analytical framework that decomposes the important components of the time series, incorporates the prior information, and captures the evolving nature of model parameters. We have employed the Bayesian structural time series (BSTS) models to investigate the temporal dynamics of COVID-19 in top five affected countries around the world in the time window March 1, 2020 to June 29, 2020. In addition, we have analyzed the casual impact of lockdown in these countries using intervention analysis under BSTS models. We achieved better levels of accuracy as compared to ARIMA models. The forecasts for the next 30 days suggest that India, Brazil, USA, Russia and UK are expected to have 101.42%, 85.85%, 46.73%, 32.50% and 15.17% increase in number of confirmed cases, respectively. On the other hand, there is a chance of 70.32%, 52.54%, 45.65%, 19.29% and 18.23% growth in the death figures for India, Brazil, Russia, USA and UK, respectively. In addition, USA and UK have made quite sagacious choices for lifting/relaxing the lockdowns. However, the pace of outbreak has significantly increased in Brazil, India and Russia after easing the lockdowns. On the whole, the Indian and Brazilian healthcare system is likely to be seriously overburdened in the next month. Though USA and Russia have managed to cut down the rates of positive cases, but serious efforts will be required to keep these momentums on. On the other hand, UK has been successful in flattening their outbreak trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.