Abstract
ABSTRACTIn recent years, considerable attention has focused on modelling and forecasting stock market volatility. Stock market volatility matters because stock markets are an integral part of the financial architecture in market economies and play a key role in channelling funds from savers to investors. The focus of this paper is on forecasting stock market volatility in Central and East European (CEE) countries. The obvious question to pose, therefore, is how volatility can be forecast and whether one technique consistently outperforms other techniques. Over the years a variety of techniques have been developed, ranging from the relatively simple to the more complex conditional heteroscedastic models of the GARCH family. In this paper we test the predictive power of 12 models to forecast volatility in the CEE countries. Our results confirm that models which allow for asymmetric volatility consistently outperform all other models considered. Copyright © 2011 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.