Abstract

• Accurately forecast the first flowering period of two typical apple producing areas in China. • It fills in the research of forecasting the first flowering period of apple from point scale to regional scale. • The phenological survey method of replacing time with space is very effective for the calibration of sequential model. • The prediction of the apple first flowering on a regional scale has important application value for optimizing orchard management. China is one of the largest apple-producing countries in the world, with large orchards and diverse climates. Accurately forecasting the first-flowering time of apple trees can assist orchard managers in their deciding when to apply anti-freeze. The temperature-driven sequential model from previous studies can be used to forecast the flowering phenology of deciduous fruit trees. However, this model requires many years of observational data for calibration, so flowering forecasts based on traditional phenological models cannot be implemented in areas that lack such historical data. To overcome this problem, the present work combines a spatial rather than a temporal phenological survey method with 1-km-gridded temperature products to calibrate the chill and heat requirement parameters of the sequential model. We then use the model to forecast the first-flowering on a regional scale for Luochuan and Linyi, which are two main apple-producing areas of China. The results show that the proposed method accurately forecasts regional flowering. The root mean squared errors (RMSE) for Luochuan and Linyi were 4.7 and 4.4 days, respectively, and the normalized RMSEs were all less than 5.19%. We expect the proposed regional first-flowering forecast method to be an important aid to optimize orchard management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.