Abstract

One of the main objectives of the time series analysis is forecasting, so both Machine Learning methods and statistical methods have been proposed in the literature. In this study, we compare the forecasting performance of some of these approaches. In addition to traditional forecasting methods, which are the Naive and Seasonal Naive Methods, S/ARIMA, Exponential Smoothing, TBATS, Bayesian Exponential Smoothing Models with Trend Modifications and STL Decomposition, the forecasts are also obtained using seven different machine learning methods, which are Random Forest, Support Vector Regression, XGBoosting, BNN, RNN, LSTM, and FFNN, and the hybridization of both statistical time series and machine learning methods. The data set is selected proportionally from various time domains in M4 Competition data set. Thereby, we aim to create a forecasting guide by considering different preprocessing approaches, methods, and data sets having various time domains. After the experiment, the performance and impact of all methods are discussed. Therefore, most of the best models are mainly selected from machine learning methods for forecasting. Moreover, the forecasting performance of the model is affected by both the time frequency and forecast horizon. Lastly, the study suggests that the hybrid approach is not always the best model for forecasting. Hence, this study provides guidelines to understand which method will perform better at different time series frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.