Abstract
The new coronavirus disease (COVID-19), which first appeared in China in December 2019, has pervaded throughout the world. Because the epidemic started later in Turkey than other European countries, it has the least number of deaths according to the current data. Outbreak management in COVID-19 is of great importance for public safety and public health. For this reason, prediction models can decide the precautionary warning to control the spread of the disease. Therefore, this study aims to develop a forecasting model, considering statistical data for Turkey. Box-Jenkins Methods (ARIMA), Brown’s Exponential Smoothing model and RNN-LSTM are employed. ARIMA was selected with the lowest AIC values (12.0342, -2.51411, 12.0253, 3.67729, -4.24405, and 3.66077) as the best fit for the number of total case, the growth rate of total cases, the number of new cases, the number of total death, the growth rate of total deaths and the number of new deaths, respectively. The forecast values of the number of each indicator are stable over time. In the near future, it will not show an increasing trend in the number of cases for Turkey. In addition, the pandemic will become a steady state and an increase in mortality rates will not be expected between 17–31 May. ARIMA models can be used in fresh outbreak situations to ensure health and safety. It is vital to make quick and accurate decisions on the precautions for epidemic preparedness and management, so corrective and preventive actions can be updated considering obtained values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.