Abstract

This paper explores a new method to model and forecast the global earthquake energy release time series. The ISC-GEM catalogue of global events with magnitude [Formula: see text] is used in this study. The magnitudes of individual events are converted into seismic energy using an empirical relation. The annual earthquake energy time series is constructed by adding the energy releases of all the events in a particular year. Then, the energy time series is decomposed into finite number of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) technique. The periodicities of these IMF’s and their contribution to the total variance of the data are examined to identify the influence of natural phenomenon on earthquake energy release. The artificial neural network technique (ANN) is further used for modeling the energy-time series. The model is verified with an independent subset of data and validated using statistical parameters. The forecast of the annual earthquake energy release is provided for the year 2016.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.