Abstract

In order to deal with the threat of the randomness of large-scale electric vehicle (EV) loads to the safe and economic operation of the distribution network effectively, a forecasting method of EV loads based upon virtual prediction parameter estimation strategy is proposed. Firstly, an in-depth analysis is conducted to thoroughly examine the applicability and target audience of various existing power user load forecasting methods. This initial phase provided a solid foundation for the introduction of the new methods. Secondly, utilizing the Monte Carlo simulation method, a charging load forecasting approach that considers both spatial and temporal distribution is developed. This method effectively captures the diversity of EV charging behaviors by leveraging virtual parameter estimation, integrating insights from historical data into future load predictions, thereby enhancing forecasting accuracy. Finally, to validate the effectiveness of this groundbreaking approach, comprehensive testing was conducted on the MATLAB R2017a simulation platform. This verification phase not only serves to demonstrate the method’s accuracy, but also underscores its practicality and reliability in real-world applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.