Abstract
Neural Network (NN) is an information processing system that has characteristics similar to biological neural networks. One of the algorithms in NN is Backpropagation Neural Network (BPNN). BPNN is an excellent method for dealing with complex pattern recognition problems. In this research, maximum water level forecasting was carried out at Sangkuliman Post using a Backpropagation Neural Network. This research aims to obtain modeling for forecasting maximum water level, as well as forecasting results using the best model. The research results show that the best model is five neurons in hidden layer 1 and 3 neurons in hidden layer 2 with the backpropagation algorithm, the activation function used is binary sigmoid, the learning rate is 0.001, and the maximum iteration is 10,000,000 with the smallest RMSE result being 1.816. The forecast results for the following 12 periods are 1.672, 1.779, 1.523, 1.271, 1.752, 1.692, 1.335, 1.479, 1.750, 1.779, 1.340, 1.269, and 1.754. Forecasting results can be used by various parties in decision-making and planning in multiple fields, as an example to see the patterns of biological and vegetable life around Sangkuliman Post. Based of forecasting results, certain months show an increase in maximum water levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.