Abstract

Abstract The current research is dedicated to harnessing cutting-edge technologies within the paradigm of Industry 5.0. The objective is to capitalize on advancements in Machine and Deep Learning techniques. This research endeavors to construct robust predictive models, utilizing historical data, for precise real-time predictions in estimating material quantities within a cement workshop. Machine Learning regressors evaluated based on several metrics, SVR (R-squared 0.9739, MAE 0.0403), Random Forest (R-squared 0.9990, MAE 0.0026), MLP (R-squared 0.9890, MAE 0.0255), Gradient Boosting (R-squared 0.9989, MAE 0.0042). The time series models LSTM and GRU yielded R-squared 0.9978, MAE 0.0100, and R-squared 0.9980, MAE 0.0099, respectively. The ultimate outcomes include improved and efficient production, optimization of production processes, streamlined operations, reduced downtime, mitigation of potential disruptions, and the facilitation of the factory’s evolution towards intelligent manufacturing processes embedded within the framework of Industry 5.0. These achievements underscore the potential impact of leveraging advanced machine learning techniques for enhancing the operational dynamics and overall efficiency of manufacturing facilities

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.