Abstract

BackgroundAn influenza forecasting system is critical to influenza epidemic preparedness. Low temperature has long been recognized as a condition favoring influenza epidemic, yet it fails to justify the summer influenza peak in tropics/subtropics. Recent studies have suggested that absolute humidity (AH) had a U-shape relationship with influenza survival and transmission across climate zones, indicating that a unified influenza forecasting system could be established for China with various climate conditions. MethodsOur study has generated weekly influenza forecasts by season and type/subtype in northern and southern China from 2011 to 2021, using a forecasting system combining an AH-driven susceptible-infected-recovered-susceptible (SIRS) model and the ensemble adjustment Kalman filter (EAKF). Model performance was assessed by sensitivity and specificity in predicting epidemics, and by accuracies in predicting peak timing and magnitude. ResultsOur forecast system can generally well predict seasonal influenza epidemics (mean sensitivity>87.5%; mean specificity >80%). The average forecast accuracies were 82% and 60% for peak timing and magnitude at 3–6 weeks ahead for northern China, higher than those of 42% and 20% for southern China. The accuracy was generally better when the forecast was made closer to the actual peak time. DiscussionThe established AH-driven forecasting system can generally well predict the occurrence of seasonal influenza epidemics in China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.