Abstract

Temperature influences the rates of many ecosystem processes. A number of recent studies have found evidence of systematic increases in Great Lakes surface water temperatures. Our study aims to construct empirical relationships between surface water temperatures and local air temperatures that can be used to estimate future water temperatures using future air temperatures generated by global climate models. Remotely sensed data were used to model lake-wide average surface water temperature patterns during the open-water period in Lakes Superior, Huron, Erie, and Ontario. Surface water temperatures typically exhibit linear warming through the spring, form a plateau in mid-summer and then exhibit linear cooling in fall. Lake-specific warming and cooling rates vary little from year to year while plateau values vary substantially across years. These findings were used to construct a set of lake-specific empirical models linking surface water temperatures to local air temperatures for the period 1995–2006. Hindcasted whole-lake water temperatures from these models compare favourably to independently collected offshore water temperatures for the period 1968–2002. Relationships linking offshore water temperatures to inshore water temperatures at specific sites are also described. Predictions of future climates generated by the Canadian Global Climate Model Version 2 (CGCM2) under two future greenhouse gas emission scenarios are used to scope future Great Lakes surface water temperatures: substantial increases are expected, along with increases in the duration of summer stratification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.