Abstract

Energy forecasting is currently essential due to its various benefits. Energy data analysis for forecasting requires a functional method due to the complexity of the observed data. This forecasting study used the Recurrent Neural Networks (RNN) method. Parameters used include batch size, epoch, hidden layers, loss function, and optimizer obtained from hyperparameter tuning grid search. A comparison of different normalization methods, namely min-max, and z-score, was conducted. Using min-max normalization yielded the best performance with MAPE of 3.9398%, RMSE of 0.0630, and R2 of 0.8996. In testing with z-score normalization, it showed a performance of MAPE of 10.6120%, RMSE of 0.7648, and R2 of 0.4142.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.