Abstract
Objectives: This study was conducted to estimate road traffic deaths and to forecast short-term road traffic deaths in China using the Elman recurrent neural network (ERNN) model.Methods: An ERNN model was developed using reported police data of road traffic deaths in China from 2000 to 2017. Different numbers of neurons of the hidden layer were tested and different combinations of subgroup datasets have been used to develop the optimal ERNN model after normalization. The mean absolute error (MAE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE) were measures of the deviation between predicted and observed values. Predicted road traffic deaths from the ERNN model and the seasonal autoregressive integrated moving average (SARIMA) model were compared using the MAPE.Results: By comparing the MAE, RMSE and MAPE of different numbers of hidden neurons and different ERNN models, the ERNN model provided the best result when the input neurons were set to 3 and hidden neurons were set to 10. The best validated neural model (3:10:1) was further applied to make predictions for the latest 12 months of deaths (MAPE = 4.83). The best SARIMA (0, 1, 1) (0, 1, 1)12 model was selected from various candidate models (MAPE = 5.04). The fitted road traffic deaths using the two selected models matched closely with the observed deaths from 2000 to 2016. The ERNN models performed better than the SARIMA model in terms of prediction of 2017 deaths.Conclusions: Our results suggest that the ERNN model could be utilized to model and forecast the short-term trends accurately and to evaluate the impact of traffic safety programs when applied to historical road traffic deaths data. Forecasting traffic crash deaths will provide useful information to measure burden of road traffic injuries in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.