Abstract
Crude oil price becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulations worldwide. Current methodologies are being challenged as they have been constrained by traditional approaches assuming homogeneous time horizons and investment strategies. Approximations they provided over the long term time horizon no longer satisfy the accuracy requirement at shorter term and more microlevels. This paper proposes a novel crude oil price forecasting model based on the wavelet denoising ARMA models ensemble by least square support vector regression with the reduced forecasting matrix dimensions by independent component analysis. The proposed methodology combines the multi resolution analysis and nonlinear ensemble framework. The wavelet denoising based algorithm is introduced to separate and extract the underlying data components with distinct features, corresponding to investors with different investment scales, which are modeled with time series models of different specifications and parameters. Then least square support vector regression is introduced to nonlinearly ensemble results based on different wavelet families to further reduce the estimation biases and improve the forecasting generalizability. Empirical studies show the significant performance improvement when the proposed model is tested against the bench-mark models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.