Abstract
Given a multiple time series that is generated by a multivariate ARMA process and assuming the objective is to forecast a weighted sum of the individual variables, then under a mean squared error measure of forecasting precision, it is preferable to forecast the disaggregated multiple time series and aggregate the forecasts, rather than forecast the aggregated series directly, if the involved processes are known. This result fails to hold if the processes used for forecasting are estimated from a given set of time series data. The implications of these results for empirical research are investigated using different sets of economic data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have