Abstract

ABSTRACTA generalized decline of amphibian populations is occurring worldwide. The causes for such a decline are not completely understood; however, climate change has been identified as a possible cause for amphibian extinction, among others. Ecological niche modeling has proven to be a useful tool to predict potential distribution of species in the context of climatic changes. In this paper, we used the Genetic Algorithm for Rule‐set Prediction (GARP) to model the potential distributions of two species of plethodontid salamanders: Pseudoeurycea cephalica and P. leprosa. We projected their potential distributions under climatic scenarios expected in 50 yr based on a conservative scenario of global climate change and assuming a moderate dispersal ability for both species. Our analyses suggest that climate change effects may pose an additional long‐term risk to both species of plethodontid salamanders, with a more dramatic scenario in the case of P. leprosa. By the year 2050, this species may lose almost 75 percent of its distributional area, and this projection is even worse when deforestation (in the way it is occurring at present) is considered within the predicted model. Our results concur with those obtained for species with limited dispersal capability because they do not track changing climates, but rather face a loss of distributional area. The survival of these species is not secure, even though their potential distributional area falls within a considerable number of natural protected areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.