Abstract

Clean energy plays an essential role in responding to environmental crises. Accurate forecasting of clean energy power generation can provide necessary references for the formulation of energy policy. This paper proposes a novel fractional discrete grey model with a dynamic time delay function (DTDFF-DGM (1,1)) to forecast clean energy power generation. This model introduces the fractional accumulation operator and the dynamic time-delay function into the discrete grey model, which ensures the priority of new information in the original data and improves the model's adaptability to different sample data. The optimal parameters of the model are calculated by the dynamic linkage between the fitting error and the test error, which effectively avoids the overfitting problem. Empirical studies have proved that the model has better prediction accuracy compared to other methods. Finally, the proposed model is employed to forecast clean energy power generation in China. The results show that from 2020 to 2025, the overall growth rate of hydropower, wind power and nuclear power in China will be 9.27%, 119.61% and 36.38%, respectively. Based on the discussion of the forecast results, relevant policy suggestions were made. This paper realizes the transformation from a static model to a dynamic model in methodology and promotes the sustainable development of clean energy power generation in application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call