Abstract
One of the key tasks in the economy is forecasting the economic agents’ expectations of the future values of economic variables using mathematical models. The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power. In this paper, we study the regimes of behavior of two economic models and identify irregular dynamics in them. Using these models as an example, we demonstrate the effectiveness of evolutionary algorithms and the continuous deep Q-learning method in combination with Pyragas control method for deriving a control action that stabilizes unstable periodic trajectories and suppresses chaotic dynamics. We compare qualitative and quantitative characteristics of the model’s dynamics before and after applying control and verify the obtained results by numerical simulation. Proposed approach can improve the reliability of forecasting and tuning of the economic mechanism to achieve maximum decision-making efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.