Abstract
This work aimed to determine a suitable method to provide air traffic passenger forecasts of Changi airport. A linear forecasting technique in the form of a seasonal autoregressive integrated moving average (SARIMA) model and a nonlinear technique known as the least squares support vector machine (LSSVM) were compared. A hybrid X-13 LSSVM approach was also compared. A fourth approach was proposed to leverage the outputs of the hybrid X-13 LSSVM method to conduct forecasts for longer forecasting horizons. Results showed that SARIMA, direct LSSVM and X-13 LSSVM methods were able to provide accurate 1-month-ahead forecasts. However, SARIMA and direct LSSVM methods both suffered from forecasting inaccuracy, as the forecasting horizon increased. The X-13 LSSVM outperformed both SARIMA and direct LSSVM methods, in terms of small magnitude errors and forecasting directional changes across the forecasting horizons. The proposed fourth approach was able to provide 24-months-ahead forecasts and was easy to implement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Review of Information Engineering and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.