Abstract
Wind energy has been well recognized as a renewable resource in electricity generation, which is environmentally friendly, socially beneficial and economically competitive. For proper and efficient evaluation of wind energy, a hybrid Seasonal Auto-Regression Integrated Moving Average and Least Square Support Vector Machine (SARIMA–LSSVM) model is significantly developed to predict the mean monthly wind speed in Hexi Corridor. The design concept of combining the Seasonal Auto-Regression Integrated Moving Average (SARIMA) method with the Least Square Support Vector Machine (LSSVM) algorithm shows more powerful forecasting capacity for monthly wind speed prediction at wind parks, when compared with the single Auto-Regression Integrated Moving Average (ARIMA), SARIMA, LSSVM models and the hybrid Auto-Regression Integrated Moving Average and Support Vector Machine (ARIMA–SVM) model. To verify the developed approach, the monthly data from January 2001 to December 2006 in Mazong Mountain and Jiuquan are used for model construction and model testing. The simulation and hypothesis test results show that the developed method is simple and quite efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.