Abstract
Abstract The output of two global atmospheric models participating in the second phase of the Canadian Historical Forecasting Project (HFP2) is utilized to assess the forecast skill of the Madden–Julian oscillation (MJO). The two models are the third generation of the general circulation model (GCM3) of the Canadian Centre for Climate Modeling and Analysis (CCCma) and the Global Environmental Multiscale (GEM) model of Recherche en Prévision Numérique (RPN). Space–time spectral analysis of the daily precipitation in near-equilibrium integrations reveals that GEM has a better representation of the convectively coupled equatorial waves including the MJO, Kelvin, equatorial Rossby (ER), and mixed Rossby–gravity (MRG) waves. An objective of this study is to examine how the MJO forecast skill is influenced by the model’s ability in representing the convectively coupled equatorial waves. The observed MJO signal is measured by a bivariate index that is obtained by projecting the combined fields of the 15°S–15°N meridionally averaged precipitation rate and the zonal winds at 850 and 200 hPa onto the two leading empirical orthogonal function (EOF) structures as derived using the same meridionally averaged variables following a similar approach used recently by Wheeler and Hendon. The forecast MJO index, on the other hand, is calculated by projecting the forecast variables onto the same two EOFs. With the HFP2 hindcast output spanning 35 yr, for the first time the MJO forecast skill of dynamical models is assessed over such a long time period with a significant and robust result. The result shows that the GEM model produces a significantly better level of forecast skill for the MJO in the first 2 weeks. The difference is larger in Northern Hemisphere winter than in summer, when the correlation skill score drops below 0.50 at a lead time of 10 days for GEM whereas it is at 6 days for GCM3. At lead times longer than about 15 days, GCM3 performs slightly better. There are some features that are common for the two models. The forecast skill is better in winter than in summer. Forecasts initialized with a large amplitude for the MJO are found to be more skillful than those with a weak MJO signal in the initial conditions. The forecast skill is dependent on the phase of the MJO at the initial conditions. Forecasts initialized with an MJO that has an active convection in tropical Africa and the Indian Ocean sector have a better level of forecast skill than those initialized with a different phase of the MJO.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have