Abstract

We consider the dynamic lot size problem for perishable inventory under minimum order quantities. The stock deterioration rates and inventory costs depend on both the age of the stocks and their periods of order. Based on two structural properties of the optimal solution, we develop a dynamic programming algorithm to solve the problem without backlogging. We also extend the model by considering backlogging. By establishing the regeneration set, we give a sufficient condition for obtaining forecast horizon under without and with backlogging. Finally, based on a detailed test bed of instance, we obtain useful managerial insights on the impact of minimum order quantities and perishability of product and the costs on the length of forecast horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.