Abstract
The objective of this study was first to establish a method to measure forces and displacement of the orbital content in defects of the orbital floor in truncated fresh and unfixed heads and second to characterize reconstruction materials with regard to punctuation strength and compression.Orbital floor defects (10 × 20 mm and 15 × 20 mm; 3 mm behind the orbital rim) were prepared after Le Fort I osteotomy. The values of force and displacement were recorded in 6 freshly frozen human heads. In addition, the punctuation strength of 2 reconstruction materials (polydioxanone [PDS] foil and collagen membrane) was evaluated using a Zwick Z010 TN1 universal testing machine. The forces of the orbital content (28.41 [SD, 1.6] g) applied to the defects of 10 × 20 mm and 15 × 20 mm with an intact periorbita were 0.04 (SD, 0.003) N (0.0002 MPa) and 0.07 (SD, 0.02) N (0.0002 MPa), respectively, and with a split periorbita were 0.06 (SD, 0.03) N (0.0003 MPa) and 0.08 (SD, 0.06) N (0.00026 MPa), respectively. The displacement values without reconstruction materials of the 10 × 20-mm and 15 × 20-mm defects were 0.94 (SD, 0.7) mm and 1.2 (SD, 0.5) mm, respectively. The PDS foil could withstand forces of 118.9 (SD, 14.1) N (0.375 MPa), and the collagen membrane could withstand forces of 44.5 (SD, 5.3) N (0.14 MPa). This is the first study to report forces charging the orbital floor. The presented results support the use of PDS foils and collagen membranes as reconstruction materials for orbital floor defects, at least in smaller and medium-sized fractures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.