Abstract

The objectives of this study were (i) to evaluate different fracture mechanisms for orbital floor fractures and (ii) to measure forces and displacement of intraorbital tissue after orbital traumata to predict the necessity of strength for reconstruction materials. Six fresh frozen human heads were used, and orbital floor defects in the right and left orbit were created by a direct impact of 3.0 J onto the globe and infraorbital rim, respectively. Orbital floor defect sizes and displacement were evaluated after a Le Fort I osteotomy. In addition, after reposition of the intraorbital tissue, forces and displacement were measured. The orbital floor defect sizes were 208.3 (SD, 33.4) mm(2) for globe impact and 221.8 (SD, 53.1) mm(2) for infraorbital impact. The intraorbital tissue displacement after the impact and before reposition was 5.6 (SD, 1.0) mm for globe impact and 2.8 (SD, 0.7) mm for infraorbital impact. After reposition, the displacement was 0.8 (SD, 0.5) mm and 1.1 (SD, 0.7) mm, respectively. The measured applied forces were 0.061 (SD, 0.014) N for globe impact and 0.066 (SD, 0.022) N for infraorbital impact. Different fracture-inductive mechanisms are not reflected by the pattern of the fracture. The forces needed after reposition are minimal (~0.07 N), which may explain the success of PDS foils [poly-(p-dioxanone)] and collagen membranes as reconstruction materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.