Abstract
Using classical density functional theory, the forces between two cylindrical nanoparticles in a liquid crystal solvent are calculated. Both the nematic and isotropic phases of the solvent are considered. In the nematic phase, the interaction is highly anisotropic. At short range, changes in the defect structure around the cylinders leads to a complex interaction between them. In the isotropic phase, an attractive interaction arises due to overlap between halos of ordered fluid adsorbed on the surfaces of the cylinders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.