Abstract
Polysiloxanes are versatile polymeric materials with widespread applications in industries ranging from electronics to biomedical devices because of their unique thermal and viscoelastic properties. Accurate molecular simulations of polysiloxanes are essential for understanding their broad applications from a microscopic perspective. However, the accuracy of these simulations is highly dependent on the quality of the force fields used. In this work, we present a comprehensive benchmark and development of force fields tailored for polydimethylsiloxane, which is one of the most widely used polysiloxane materials. Our focus is on their performance in predicting key thermophysical properties including density, heat capacities, isothermal compressibility, and transport properties such as viscosity and thermal conductivity. Experimental measurements are performed in parallel to rigorously validate simulation outcomes. Existing force fields for polydimethylsiloxane, including those derived for organic and inorganic systems, are systematically evaluated against experimental data to identify limitations in accuracy and transferability. Simulation results are compared extensively with experimental observations across a range of temperatures and pressures, revealing the strengths and shortcomings of these commonly utilized force fields for polydimethylsiloxane. Discrepancies between force field predictions and experimental measurements are analyzed in detail for thermodynamic and transport properties of polydimethylsiloxane. This benchmark study serves as a critical assessment of current force fields for polydimethylsiloxane and offers guidelines for their further development, enabling more reliable simulations of polysiloxane-based materials for various industrial applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have