Abstract

To investigate the combined effects of time delay, nonlocal dispersal and climate change on population dynamics, we consider a time-delayed nonlocal dispersal equations in shifting habitats. Firstly, with the construction of appropriate lower and upper solutions, the existence of forced waves is established via the monotone iteration scheme. Furthermore, we show that the forced wave profile is unique in the classic sense, i.e., NOT up to a shift in the co-moving frame coordinate, by applying the sliding technique. Our result shows that time delay does not prevent the occurrence of forced extinction waves for non-locally diffusive populations in degraded habitats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.