Abstract
The effects of forced oscillations in the partial pressure of a reactant is studied in a simple isothermal, bimolecular surface reaction model in which two vacant sites are required for reaction. The forced oscillations are conducted in a region of parameter space where an autonomous limit cycle is observed, and the response of the system is characterized with the aid of the stroboscopic map where a two-parameter bifurcation diagram for the map is constructed by using the amplitude and frequency of the forcing as bifurcation parameters. The various responses include subharmonic, quasi-periodic, and chaotic solutions. In addition, bistability between one or more of these responses has been observed. Bifurcation features of the stroboscopic map for this system include folds in the sides of some resonance horns, period doubling, Hopf bifurcations including hard resonances, homoclinic tangles, and several different codimension-two bifurcations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.