Abstract

This present work consists of investigating the effects of particle size heterogeneity and flow rates on transport-reaction kinetics of CuSO4 and Na2EDTA2− in porous media, via the combination of a bimolecular reaction experiment and model simulations. In the early stages of transport, a peak is observed in the concentration breakthrough curve of the reactant CuSO4, related to the delayed mixing and reaction of the reactants. The numerical results show that an increase in flow rate promotes the mixing processes between the reactants, resulting in a larger peak concentration and a slighter tail of breakthrough curves, while an increase in medium heterogeneity leads to a more significant heavy tail. The apparent anomalous diffusion and heavy-tailing behavior can be effectively quantified by a novel truncated fractional derivative bimolecular reaction model. The truncated fractional-order model, taking into account the incomplete mixing, offers a satisfactory reproduction of the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.