Abstract
A method for estimating in situ transformation rates of sorbing solutes in groundwater is presented. The method utilizes a novel data processing technique called "forced mass balance" (FMB) to remove the effects of transport processes from reactant and product concentrations measured during single-well, "push-pull" tests. The effectiveness of the FMB technique was evaluated by quantifying errors in derived rates obtained by applying FMB to simulated push-pull test data generated by a numerical model. Results from simulated tests indicated that errors in derived rates increase as the test duration, groundwater velocity, and ratio of reactant to product retardation factors increase. In addition, errors in derived rates increase as the reaction rate constant and aquifer dispersivity decrease. As a demonstration, the FMB technique was used to derive an in situ reductive dechlorination rate for trichlorofluoroethene (TCFE) using data from a field push-pull test. Error analyses indicated that the in situ TCFE transformation rate was underestimated by a factor of 1.1-2. Thus, the FMB technique makes it possible to estimate in situ transformation rates of sorbing solutes and when FMB is coupled with computer modeling to estimate errors in derived in situ rates.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have