Abstract

A hybrid analytical-numerical approach based on the Generalized Integral Transform Technique is employed to simulate the laminar forced convection (hydrodynamically fully developed and thermally developing laminar flow) of power-law non-Newtonian fluids inside ducts with arbitrary shaped cross-sections. The analysis is illustrated through consideration of both right angularly and isosceles triangular ducts subjected to constant wall temperature as thermal boundary condition. Reference results for quantities of practical interest such as dimensionless average temperature and Nusselt numbers within the thermal entry region were produced for different values of power-law index and apex angles. Finally, critical comparisons are performed with results available in the literature for direct numerical and approximate approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.