Abstract
The so-called generalized integral transform technique (GITT) is employed in the hybrid numerical–analytical solution of two-dimensional fully-developed laminar flow of non-Newtonian power-law fluids inside rectangular ducts. The characteristic of the automatic and straightforward global error control procedure inherent to this approach, permits the determination of fully converged benchmark results to assess the performance of purely numerical techniques. Therefore, numerical results for the product Fanning friction factor-generalized Reynolds number are computed for different values of power-law index and aspect ratio, which are compared with previously reported results in the literature, providing critical comparisons among them as well as illustrating the powerfulness of the integral transform approach. The resulting velocity profiles computed by using this methodology are also compared with those calculated by approximated methods for power-law fluids, within the range of governing parameters studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.