Abstract
Abstract In this present work, forced convection heat transfer from a heated blunt-headed cylinder in power-law fluids has been investigated numerically over the range of parameters, namely, Reynolds number (Re): 1–40, Prandtl number (Pr): 10–100 and power-law index (n): 0.3–1.8. The results are expressed in terms of local parameters, like streamline, isotherm, pressure coefficient, and local Nusselt number and global parameters, like wake length, drag coefficient, and average Nusselt number. The length of the recirculation zone on the rear side of the cylinder increases with the increasing value of Re and n. The effect of the total drag coefficient acting on the cylinder is seen to be higher at the low value of Re and its effect significant in shear-thinning fluids (n < 1). On the heat transfer aspect, the rate of heat transfer in fluids is increased by increasing the value of Re and Pr. The effect of heat transfer is enhanced in shear-thinning fluids up to ∼ 40% and it impedes it’s to ∼20% shear-thickening fluids. In the end, the numerical results of the total drag coefficient and average Nusselt number (in terms of J H −factor) have been correlated by simple expression to estimate the intermediate value for the new application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have