Abstract

Abstract In recent years, two alarming trends in North Atlantic climate have been noted: an increase in the intensity and frequency of Atlantic hurricanes and a rapid decrease in Greenland ice sheet volume. Both of these phenomena occurred while a significant warming took place in North Atlantic sea surface temperatures (SSTs), thus sparking a debate on whether the warming is a consequence of natural climate variations, anthropogenic forcing, or both; and if both, what their relative roles are. Here models and observations are used to detect and attribute long-term (multidecadal) twentieth-century North Atlantic (NA) SST changes to their anthropogenic and natural causes. A suite of Intergovernmental Panel on Climate Change (IPCC) twentieth-century (C20C) coupled model simulations with multiple ensemble members and a signal-to-noise maximizing empirical orthogonal function analysis are used to identify a model-based estimate of the forced, anthropogenic component in NA SST variability. Comparing the results to observations, it is argued that the long-term, observed, North Atlantic basin-averaged SSTs combine a forced global warming trend with a distinct, local multidecadal “oscillation” that is outside of the range of the model-simulated, forced component and most likely arose from internal variability. This internal variability produced a cold interval between 1900 and 1930, followed by 30 yr of relative warmth and another cold phase from 1960 to 1990, and a warming since then. This natural variation, referred to previously as the Atlantic Multidecadal Oscillation (AMO), thus played a significant role in the twentieth-century NA SST variability and should be considered in future, near-term climate projections as a mechanism that, depending on its behavior, can act either constructively or destructively with the region’s response to anthropogenic influence, temporarily amplifying or mitigating regional climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call