Abstract
In this paper, a novel force sensor based on commercial discrete optoelectronic components mounted on a compliant frame is described. The compliant frame has been designed through an optimization procedure to achieve a desired relation between the applied force and the angular displacement of the optical axes of the optoelectronic components. The narrow-angle characteristics of Light Emitting Diode (LED) and PhotoDetector (PD) couples have been exploited for the generation of a signal proportional to very limited deformation of the compliant frame caused by the external traction force. This sensor is suitable for applications in the field of tendon driven robots, and in particular the use of this sensor for the measurement of the actuator side tendon force in a robotic hand is reported. The design procedure of the sensor is presented together with the sensor prototype, the experimental verification of the calibration curve and of the frame deformation and the testing in a force feedback control system. The main advantages of this sensor are the simplified conditioning electronics, the very high noise-to-signal ratio and the immunity to electromagnetic fields.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have