Abstract

One of the most important requirements for a cantilever-type sensor to obtain high force sensitivity is small thickness. By using current micromachining technology it is possible to produce cantilevers of submicrometer thickness. Where self-sensing piezoresistive cantilevers with submicrometer thickness are concerned, it is necessary to use a technology which can create ultra-thin (<100 nm) piezoresistors on a cantilever surface. This work demonstrates for the first time the application of a relatively simple, rapid thermal diffusion method by using spin-on glass film to fabricate sub-100 nm piezoresistors on an ultra-thin single-crystal silicon cantilever. Compared to other shallow junction fabrication methods, which involve implantation or deposition of a doped layer, this method is advantageous since no damage is created in the crystal structure and no toxic gas or hazardous material is used during the process. Besides, this technique can be applied by using low-cost rapid annealers, which can be readily found in most laboratories. By using this method, piezoresistive cantilevers with stiffness in the range of 0.001 N m−1 with sub-100 nm thick piezoresistors are fabricated, and a complete characterization of the fabricated cantilevers is performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call